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Abstract. A conceptually new version of the irreducible Green function (IO) formalism is 
applied to study a Heisenberg ferromagnet with first-neighbour exchange ( I t )  and second- 
neighbour exchange (h). The most imporrant quantity which appears in IRC formalism is 
the commutator average 1 = ( I l f i r .  S;]) (where k, q' and k' refer to the incoming, outgoing 
and internal momentum lines. respecuely), which is found to be not only non-zero but also 
independent of k' in a natural way. This replaces the old irreducibility condition A = 0 and 
enables one to recast the equation of motion into the exad Dyson form. For the estimation of 
self-energy the reducible operators are mapped onto irreducible observables. which introduces 
a parameter e into the self-energy operator. The values of < for various ratios h / J 1  and for 
several spins have been found from the results of exact high-temperature series. From the least- 
squares fit of these values of < against 11s. we obtain an estimate of < for S = m. This is then 
used to evaluate the Curie temperatwe for S = M and a FCC lattice. The result is found to be 
in good agreement with the series result. The theory is then applied to EuS which corresponds 
to a S = 4 FCC lattice. Using the experimental values of Tc the exchange parameten JI and h 
have been computed. The results agree very well with the series results and with those obtained 
from spin-wave analysis. 

Y 

1. Introduction 

The irreducible Green function (IRG) approach has been adopted in the past by several 
workers to study some simple and complicated problems of condensed-matter theory 
(Plakida 1971, 1973, Micnas and Kawalewski 1979, Kuzemsky 1978, 1989, Marvakov etal 
1985, Chakraborty 1988, 1989). In all these calculations, a mean-field or a generalized 
mean-field contribution is extracted from the higher-order Green function so that the 
residual Green function is made irreducible by means of a formal irreducibility condition 
A = ([Zkk,, ST]) = 0, where I,, is the Fourier-transformed irreducible operator, S; is a 
Fourier-transformed spin operator, and k,  q' and k' refer to the incoming, outgoing and 
internal momentum lines, respectively. The above condition was employed with the aim 
of recasting the equation of motion in the form of the exact Dyson equation in which the 
irreducible self-energy appears. However, in the course of canying out the derivation by 
IRG formalism for any problem, we observed that there is neither any reason nor any need 
to put A equal to zero, and that there exists an exact condition which appears in the analysis 
in a natural way and which is not based on any assumption. This condition states that A is 
independent of k'. This simple condition enables one to accomplish the task of recasting 
the equation of motion in the form of the exact Dyson equation. The advantage of the 
present condition is that one does not need to include unknown parameters and the residual 
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Green function is written by extracting the contributions estimated from known decoupling 
approximations applied to the problem concerned. The exact Dyson equation derived in 
this way for a Heisenberg ferromagnet with first- and second-nearest-neighbour exchange 
consists of a self-energy operator E, the computation of which seems to be extremely 
difficult because of the appearance of a Green functon such as ((zk; Iq,)), where Ik and 
Zq, are the irreducible operators. Some time ago, one of the present authors (Chahborty 
1988, 1989) decoupled such a Green function by the random-pbase approximation (RPA), 
but strictly speaking the estimation of the self-energy in this way is grossly inaccurate. For 
accurate estimation the reducible operators are mapped onto irreducible observables so that 
we need to use a parameter t which has been determined by matching with the known 
values of Curie temperature obtained from the exact high-temperature series expansion. By 
extrapolation to S + 00 the value of for a classical Heisenberg ferromagnet has been 
derived. This value o f t  provides an accurate estimate of the Curie temperature for S = 00. 

The theory is then applied to estimate the values of the exchange constants for EuS, a 
member of the europium chalcogenide series. The results agree well with those obtained 
from other theories. 

S N Mitra and K G Chakraborry 

2. The Hamiltonian and the irreducible Green function theory 

We consider the Heisenberg model with first- and second-neighbour exchange described by 
the following Hamiltonian: 

where w is the magnetic moment per site and H is the applied magnetic field. The first sum 
in equation (1) extends to first neighbours and the second sum to second neighbours. JA; 
and .Ii: represent the nearest- and next-nearest-neighbour exchange integrals, respectively. 

We use here a Zubarev Green function ((S;; S;)), where f and g are lattice sites. The 
Fourier-transformed equation of motion in momentum space is 

where C d  denotes the mean-field contribution and C d  denotes the extra-mean-field 
contribution: 

In the old IRG approach the A-values are determined from the assumed irreducibility 
condition: A = 0. In the new approach it does not matter whether we put Air = Ax-kf = 0,  
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or A x ,  #- A k - k ,  # 0. In the Case when A k f  = A k - p  = 0 the zeroth-order Green function 
contains only the mean-field contribution and the rest is accumulated in the self-energy 
operator of the Dyson equation. When AV # A k - k .  # 0, more conhibutions are allowed 
to be included in the zeroth-order Green function. The extent to which these-contributions 
exceed the mean-field contribution depends on the A-values. We here choose, in accordance 
with the Callen (1963) decoupling scheme, 

A k ,  = - ( S z ) ( S -  2 9  k - k  ,S+ k-k')' (6) 

With this choice we arrive at 

where n = (Sz) and 

Equation (7) consists of a Green function ((@A; 4)) which can be eliminated by means 
of differentiation a second time so that the equation of motion reads 

Considering H as given by equation (1) we obtain the Fourier-transformed equation in 
momentum space: 

(10) 2 +  
((Gkk; @q')) ( (@k; ( S k , S k - ,  - St-k-YS,$) -c6f-c:& 

With C& and CLd as in (4) and (5)  we obtain 

 with 

A = ([@kk; S21). 

At this point of the analysis our conceptually different version of IRG formalism emerges. 
We note that the first term on the right-hand side of equation (11) does not contain the 
summation over k', implying that no internal momentum indices appears in this term and 
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hence A must be regarded as independent of internal momentum k'. Substituting (11) in 
(7). we obtain 

S N Mitra and K G Chokraborty 

The second term on the right-hand side vanishes because &(J,f' + Jj?') = 0 and 
hence it is not necessary to put A equal to zero. Thus we can write equation (12) in the 
form of a matrix Dyson equation 

G = GO + GOPGO (13) 

where Go is the zeroth-order Green function: 

m l a  Go = - 
W - O k  

and P is the polarization operator by 

(14) 

Defining = P(1+ PGo)-' as the self-energy we arrive at the exact Dyson equation 

G = G O +  G O E G O .  (16) 

The R G  formalism is now complete and up to this point exact; equation (16) allows 
one in principle, ta compute the thermodynamic quantities exactly. 

3. Self-energy and the renormalized spectra 

Although we have been able to devise an exact IRG formalism, it does not seem possible 
at this stage to perform the exact computation of self-energy. For its estimation we present 
the following method. 

It is worth noting that a mapping of reducible observables into the irreducible operator 
A, -+ Ai, may be defined such that the commutaton relations are preserved. That is, 
if [A,, BJ = C,, then [Ai,, Bi,] = Ci, is true. In addition to this, one must require 
(A,) = L(Ai,), L being a scale factor. A well known example of such mapping is the 
Holstein-Primakoff and Dyson transformations, where the spin operators (reducible) are 
transformed to boson operators (irreducible). In accordance with such mapping we can 
write, in general, 

((Air; Bir)) e*((&; 4)) 117) 

being a spin-dependent parameter (Mitra and Chakraborty 1994) 
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Following (17) the expression for the Self-energy can be written, to leading order, in 

(18) 

the form 

= 4rr2Gke2(Jf) - J,‘“ + J?’ - JP))’. 
k 

Using this, the normalized Green function can be expressed as 

1 G r = -  b (  ~ +’> 
231 U - E 1  U - E 2  

61 and 62 being the nearest- and next-nearest-neighbour vectors, respectively. 

4. Results for the Curie temperature 

An expression for the Curie temperature can be derived in the usual manner from the relation 

(23) 
S(S + 1) 

3@ (Si) = 

(234 

in which it is necessary to evaluate the quantity 

K’ = ~ (s;) E(J$’+ .I;?) - Ji!\, - J;!k,)(S,;S$). (24) 
s v x  k ’ ~  

where 
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Putting fi 5 f 2  and taking the limit (Sz) -+ 0, we arrive at the following expression 
for the Curie temperature: 

with 

For S = 00 we obtain 

Both equation (27) and equation (28) contain the parameter (. The extended Watson 
sum F ( a )  has been computed in the literature. The values o f f  for different values of 01 

and S are determined by matching the values oft&) obtained from equation (27) with 
those obtained from the exact. high-temperature series expansion (HTE) carried out by Wood 
and Dalton (1967) for a Heisenberg ferromagnet with first- and second-neighbour exchange. 
These values are shown in table 1 where 01 has been considered from 0 to 1 and S = 1, 1, 
$, 2 5 and 3. It is to be noted from table 1 that each row approximately obeys a linearity 

' . 2  relation = a + b/s ,  a and b being the parameters to be determined by least-squares 
fitting. The values of a and b for various values of 01 are shown in table 2. Extrapolating to 
S + 00, we have estimated the values o f t  for various values of 01. We utilize this value of 
( in equation (28) and the values oft&) have been calculated. These are shown in table 2 
where the exact series results are also quoted for comparison. The agreement between the 
calculated values and HTE results is indeed satisfactory. 

Table 1. The value of&(cr) obtained by matching the exact series estimates of Curie tempcrnture 
with the values obtained from the present theory. 

(I - 
0 
0. I 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

S =  4 
0.661 
0.714 
0.769 
0.827 
0.881 
0.939 
0.979 
1.054 
1.113 
1.170 

S=l 
0.452 
0.485 
0.546 
0.588 
0.633 
0.677 
0.719 
0.764 
0.805 
0.849 

- s=  1 2 - 
0.360 
0.405 
0.453 
0.493 
0.537 
0.578 
0.617 
0.656 
0.695 
0.732 

s = 2  

0.302 
0.362 
0.405 
0.444 
0.487 
0.526 
0.564 
0.600 
0.637 
0.672 

S = Z  - 
0.273 
0.324 
0.376 
0.4 13 
0.456 
0.494 
0.53 I 
0.567 
0.614 
0.635 

s=3  

0.247 
0.305 
0.346 
0.392 
0.435 
0.472 
0.509 
0544 
0.578 
0.612 

1.0 1.230 0.891 0.769 0.706 0.669 0.644 
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Table 2. The valne of ~ B T ~ / Z I J I I S ’  for S = m calculated fmm the present theory for the 
RC lattice. The resulfs are compared with those obtained from the ME. The values of  $(m) 
extrapolated to S = m are also shown. CL and h are the least-square p m e t e n .  the values of 
which are obtained irom table I from a fitting with the equation 

k~Tc(S-tm)/ZtJiS~ 

= I <  + b/s. 

0. (1 h b ( m )  Calculated Exact 

0 0.1819 0.2456 0.1819 0.5229 0.5308 
0.1 0.2346 0.2424 0.2346 0.5567 0.5631 
0.2 0.2787 0.2495 0.2787 0.5921 0.5995 
0.3 0.3140 0.2599 0.3140 0.6244 0.6313 
0.4 0.3538 0.2666 0.3538 0.6563 0.6667 
0.5 0 3864 0.2791 0.3864 0.6880 0.6944 
0.6 0.4178 0.2919 0.4178 0.7196 0.7310 
0.7 0.4481 0.3054 0.4481 0.7509 0.7578 
0.8 0.4811 0.3175 0.4811 0.7790 0.7937 
0.9 0.5051 0.3346 0.5051 0.8123 0.825 I 
1.0 0.5313 0.3513 0.5313 0.8430 0.8530 

5. Application to experimental results 

We have seen in the previous section that the present IRG theory is able to reproduce, with 
a good degree of accuracy, the values of Curie temperature for an S = w Heisenberg 
ferromagnet for several different values of the parameter CY and for all lattice structures, the 
parameter ( being determined by matching with the exact values for several spin values and 
then extrapolating to S + CO. For a more crucial experimental test of IRG results, many 
observed data are available for the europium chalcogenide series in which both first- and 
second-nearest neighbour exchange interactions are believed to exist to an appreciable extent. 
For such verification we concentrate only on one member of the europium chalcogenide 
series, namely EuS, for which S = f ,  01 = -0.4, Z1 = 12 and 2 2  = 6. 

To carry out the experimental test it is of prime necessity to have an estimate of ( for 
EuS and for such an estimate we need to proceed as in the previous section. The values for 
Tc for S = from the exact series expansion are not available in the literature. Hence we 
carry out an extrapolation of the HTE results of Wood and Dalton. To begin with we note 
that in table 1 the rows obey a least-squares fit relation, which is distinctly different from 
that obeyed by the columns. In the former case, 01 remains fixed and in the latter S is fixed. 
For the rows~we attempt to get a least-squares fit with the following relation: 

Considering any particular row we can determine the least-squares fit parameters A 
and B. Evidently, for different 01, the values of A and B are different. We are primarily 
interested in the value DI = -0.4 since it corresponds to EuS. Exact values of J1S2/ksTc in 
this case, obtained by Wood and Dalton, are shown in table 3 for S = 1, 4, 2, $ and 3. Using 
these values the parameters A and B have been determined, so that the extrapolated values 
for S = 3 can be calculated. The value of JISz/k,Tc = 0.196 for S = CO which is close to 
the exact value, 0:193. Equation (29) has been plotted in figure 1. The extrapolated values 
are shown by the full curve and the HTE data are shown by full circles. It is interesting to 
see that the average error is not larger than 1.2%, and equation (29) can be comfortably 
used to calculate the Curie temperature for $. 
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0.10 

Table 3. Extrapolation of the exact high-temperature series expansion (EKE) for a FCC lattice 
according to the equation JlS2/ksTc(e) = A t B/S314, where A and B are least-squares 
parameters. The result for S = obtained from table 2 are compared with the EHTE. Here the 
extrapolation has been performed with five values of spin: S = I ,  2, 2, and 3. All results 
refer to the w e  [I = -0.4. 

I I I  0.2 I I I I I 

S A  B Exact W E  

I 0.196-0.081 0.116 0.115 
0.135 0.136 
0.147 0.148 2 
0.155 0.155 i 

3 0.162 0.160 

t 
5 

The columns of table 1 enable us to estimate e for a particular spin value. The values of 
c , y ( ~ )  for any particular S for different CI can be obtained from the fitting relation E = a+b/s, 
a and b being taken from table 2. In this way the values of h l z ( o l )  have been calculated. 
These values of hIz(a) are shown in table 4 for CI from 0 to 1. If one plots these values of < against 01, we note as a whole that the fitting curve should deviate slightly from linearity 
but, if we look at the first six and the last six values separately, the curve reduces to linear 
in two separate cases. Since we are chiefly interested in the case CI = -0.4 we concentrate 
on the first six values. As these values fall approximately on a straight line, we attempt to 
carry out a least-squares fit with the relation e = A' i lyB'  (figure 2). The calculated values 
of the parameters A' and B' are shown in table 4. These values yield hp-0.4) = 0.1 117 
which may thus be regarded as the value corresponding to EuS. 

We can now use the value of 6 for EuS as measured above in equation (23) to obtain 
the value of the exchange constants J j j k ~  and J*/kB if we know the value of Tc for 
EuS. Moruzzi and Teaney (1963) reported from specific heat data that TC = 16.3 K. By 
comparison of spin-wave theory with low-temperature magnetization and specific heat data, 
Charp and Boyd (1964) found that J l / k s  = 0.20 K, J l / k s  = -0.08 K. Using these values 
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Table 4. Least-squarers fit of 6 = A' + aB' for S = I. 
387 

h1~7/2(d A' B' h/2(-0.4) 
0.0 0.2521 0.2581 0.4247 0.1117 
0.1 0.3039 
0.2 0.3500 
0:3 0.3883 
0.4 0.4300 
0.5 0.4661 
0.6 0.5012 
0.7 0.5354 
0.8 0.5684 
0.9 0.6007 
1.0 0.6317 

of the exchange constants, Callen and Callen (1964) deduced within the framework of the 
cluster approximation, that Tc = 16.9 K. Here we shalVconsider the case the other way 
round. Using the experimental value of TC obtained by Moruzzi and Teaney, the exchange 
constants Jl/kB and JZ/kB have been estimated. These values shown in table 5 are in 
good agreement with those obtained from the EHTE and from spin-wave analysis. It is 
to be noted that the molecular-field approximation (MFA) yields much lower values. It is 
necessary to remark that the cluster approximation for the model considered by Callen and 
Callen (1964) gave T, = 16.9 K using the values given by Chap and Boyd (1964) for the 
exchange constants. Finally, we would like to point out that the experimental magnetization 
curves and the susceptibility data can be satisfactorily reproduced in a straightforward way 
using the IRG values of the exchange constants given in table 5. We do not, however, 
present these results here. 

Table 5. The values of hlks  and 32/kB for EuS obtained from IRG. For comparison the values 
obtained from MTE. MFA and spin-wave analysis are also shown. Tc has been taken to be 16.3 K. 

JilkB h / k ~  Source 

0.24 -0.096 IRG 
0.22 -0.088 EHrE 
0.20 -0.08 Spin wave 
0.16 -0.064 MFA 

6. Concluding remarks 

The IGF theory presented in the preceding sections differs from former approaches in two 
essential aspects. 

(i) The derivation of the exact Dyson equation is carried out without using any ad-hoc 
irreducibility condition A = (I&, S;]) = 0. Since A depends on the incoming and the 
outgoing momentum lines and since it does not depend on the intemal momentum index 
k', the equation of motion reduces, in a natural way, to the exact Dyson equation. 

(ii) The self-energy appearing in the Dyson equation contains a Green function of 
irreducible operators. For decoupling this type of Green function, we perform a mapping 
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of the reducible operator A, onto the irreducible operator Air in the form A, = LAk,  L 
being a scale factor depending on spin. This type of mapping is analogous to the Holstein- 
Primakoff transformation of the spin operator (reducible) to the boson (irreducible) operator. 
However, we have no knowledge at present of the explicit form of the spin-dependent scale 
factor L and so we had to introduce parameter .$ into the estimation of self-energy. Since 
we have considerable knowledge about the accurate values of the Curie temperature from 
the exact series expansion analysis we found the values of 5 in a straightforward way. In 
future investigations we shall attempt to devise a procedure for determining the values of 
in a fundamental way. 

Furthermore, we would like to draw attention to the earlier work of Chakaborty (1988, 
1989) where in fact the commutator average was assumed to vanish, not to enable calculation 
of the arbitrary parameters, but rather to enable one to recast the equation of motion in the 
Dyson form. That assumption has been found here to be unnecessary. Furthermore in 
those studies the IRG appearing in the self-energy operator were simply decoupled by the 
RPA, i.e. in the light of the present theory the parameter ( had been assumed to be unity. 
This is quantitatively erroneous. However, since no exact high-temperature expansion for 
a biquadratic coupling ferromagnet is available, the estimation of p cannot be made as is 
done in the present paper. 

S N Mitra and K G Chakraborry 
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